Space Odyssey

Tom Moser wants to put Texas on the map as a commercial launch pad for cargo-carrying rockets

On a summer day in 1969, as American hearts pounded in cadence to Neil Armstrong's first step on the moon, NASA engineer Tom Moser's heart almost stopped cold.

About two weeks before the epic launch, Moser's boss at the Johnson Space Center in Houston had assigned him a top-secret mission. Congress had quietly decreed that the Apollo 11 crew would plant an American flag on the moon's surface. Moser, at the time a 30-year-old structural engineer in charge of the Apollo command modules, had the job of figuring out how to design a flag that would stick in the lunar soil and not blow over or burn up when the spacecraft lifted off for its return trip to Earth.

He also had to figure out how to stow the flag. He designed a staff that would collapse like a telescope, but the compact package, three feet long and only a few inches in diameter, was still too big to put inside the crowded capsule. Moser decided the flag could be stored in a housing bolted to the module's ladder, where it would be out of the way during the flight, yet easily accessible for the astronauts once they touched down.

Now, picture the familiar scene: The Eagle has landed; the hatch opens. Armstrong, however, does not descend the ladder rung by rung. Instead, he jumps off the second rung from the bottom and lands on the moon surface. To those watching at home, Armstrong's giant leap off the ladder looked like zealousness. To Moser, though, missing that one small step looked like catastrophe.

"It scared the bejesus out of me," Moser recalls. "When he jumped, I thought the ladder broke because we had stuck that flag on there at the last minute. And the thought that went through my mind at that moment was the worst-case scenario -- that a sharp edge from the broken ladder punctures his space suit, you know, and the whole Apollo program is over. So my heart went right to my throat."

Turned out that Armstrong was just excited. Moser swallowed, and his heart returned to his chest.

Today, Moser remains a man on a mission, but this time the world isn't watching. Even Texas isn't paying much notice as he navigates a cosmic plan for new-age spacecraft to blast off from Texas soil. Once in orbit, the spacecraft would spew its cargo of satellites, which would allow earthlings to download information from the World Wide Web at warp speed, teleconference with ease and make wireless phone calls from and to anywhere on the planet. Or the spacecraft would shuttle scientists and equipment to the International Space Station orbiting 220 miles above the Earth. The futuristic launches would originate from what is now barren Gulf Coast real estate or remote West Texas grazing land.

Moser was hired last February to head the Texas Aerospace Commission, a state agency with a $200,000 annual budget and three employees that exists to bring more space and aviation business to the state. Since coming on board, Moser has worked almost exclusively on preparing a formal bid that could transform parts of Texas into a space launching pad in the 21st century.

The odds against him are astronomical. But Moser doesn't get rattled by much, having witnessed the American space program's most intense moments from the front row. He sat next to one former and one future director of the Johnson Space Center inside Mission Control when the Space Shuttle Challenger exploded 72 seconds after takeoff on January 28, 1986. The NASA engineer in charge of developing the 22,000-piece tile puzzle that made up the shuttle's thermal-protection system, Moser had devoted 16 years of his life to the program.

He has just about seen it all. If he accomplishes this next mission, though, he will get to see one thing he never has seen: a space launch within the borders of his home state of Texas.

A different kind of space odyssey is upon us. Within the next ten years, airports will be built in this country expressly for commercial space missions. They will be called spaceports, and Moser wants Texas to have one of the first.

A new generation of spacecraft -- ranging in appearance from shuttle-like to rocket-like to funky-like -- is being designed and manufactured by several aerospace companies. Called reusable launch vehicles, or RLVs, they are cargo carriers that lift off from a land-based spaceport, deliver communications satellites several hundred miles into orbit and return to Earth fully intact. The entire flight could take no more than a couple of hours, and the vehicle could be ready to fly again in as few as two days.

Earlier this year, Lockheed Martin put out a call to bidders to host a spaceport for its winged VentureStar, an RLV being developed with a $900 million boost from NASA. Similar in design and flight to a space shuttle, VentureStar would launch vertically and land on a runway. If two VentureStar vehicles are christened as planned in late 2003, they would fly a combined 40 times a year, maybe 50, if they also make deliveries to the International Space Station. Lockheed would need final assembly of VentureStar to occur at the spaceport, because the vehicle's 128-foot wingspan and 127-foot length make it impractical to transport it intact over land. States are viewing the VentureStar spaceport as a plum that could bring with it as many as 3,000 quality jobs. In Texas, it is also seen as having the potential to alter the entire economic makeup of a region by propelling it into the space age.

Next Page »
My Voice Nation Help
Houston Concert Tickets